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Abstract

A general method for simulating diffusive processes in inhomogeneous, anisotropic media or in spaces with non-

trivial geometry, such as on irregular metallic surfaces or cellular membranes, is derived through the diffusion ap-

proximation leading from the Master equation to the Fokker–Planck equation. The method is of the Monte Carlo type,

and it can be applied to multi-particle systems and even coupled to internal dynamics, for example the quantum me-

chanical development of spin states. The correctness of the algorithm is proved and optimization issues discussed. As an

illustration, recombination processes on a curved surface is treated.
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1. Introduction

Diffusion processes occur countless times in theoretical and experimental considerations across many

fields of science [1], and applications hereof to real life systems are abundant. Unfortunately, only the

simplest of systems can be treated analytically, a fact that has spawned a barrage of specialized numerical
routines for simulating particle dynamics within the context of statistical mechanics. The majority of these

methods are Monte Carlo-based methods as they readily incorporate the statistical nature of the underlying

problem [2]. They are somewhat cumbersome on the computational side (CPU time) but they are far easier

to extend than many of their analytical/numerical alternatives with respect to particle number, dimension of

space, asymmetries of boundary conditions and various properties of the media.
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One of the more popular Monte Carlo approaches is the Metropolis algorithm [3] which can be used to

sample any (equilibrium) distribution under quite loose assumptions. Regarding time development of out-

of-equilibrium systems, the random walk model is commonly recognized as a correct representation of the
single-particle diffusion process in isotropic and homogeneous media with no external forces whenever the

step size is suitably small. Kikuchi et al. [4] proved that the incorporation of the Metropolis algorithm into

the random walk yields a correct description of the multi-particle diffusion process even in the presence of

an external potential. In other words, the applicability of the Metropolis algorithm was expanded from

merely equilibrium descriptions to detailed time-development of diffusive systems. Later, the same authors

extended their method to include hydrodynamical effects [5], thereby providing an example of an aniso-

tropic and inhomogeneous diffusion process described in Cartesian coordinates.

In a broader perspective, other types of anisotropy and inhomogeneity are relevant to study, and it is
sometimes desirable to use other coordinate systems, for example spherical coordinates. In some cases, such

as diffusion on a sphere, a Cartesian system does not even exist. Diffusion processes on manifolds are

usually established by rolling a random walk in a flat space onto the surface [6,7]. Theoretically such

problems can be solved by considering the flow of diffeomorphisms on the manifold, but the application of

these analytical methods is limited to isotropic and homogeneous systems. For most physical systems such

considerations are too involved to be carried through anyway. In these setups, it is tempting to apply some

ad hoc simulation scheme permuting random coordinates slightly and repeatedly, but unless extreme care is

taken, such computational techniques almost certainly represent a diffusion operator different from what
was originally intended.

The work in this paper suggests an alternative approach to simulations of diffusive processes in general.

Anisotropic effects are modeled differently from Kikuchi et al. [4,5] in a way which in some cases is more

efficient and in the isotropic case collapses into the existing description. Like its predecessors, it is capable of

performing time-development of multi-particle diffusive systems subjected to (possibly non-conservative)

forces in anisotropic and inhomogeneous media, and it is easily derived to incorporate coupled processes

(potentially involving internal degrees of freedom) such as reaction, scavenging, particle creation and spin

dynamics.
Uniquely for the algorithm provided here is its ability to treat spaces of non-trivial geometry thereby

facilitating sound models and calculations of particles undergoing Brownian motion on curved surfaces.

Examples of such surfaces are liquid–gas interfaces, metallic surfaces, the surface of large proteins, elon-

gated micelles, cellular membranes and nano-tubes/structures. For such systems (or even flat Euclidean

systems in non-Cartesian coordinates), ignoring the curvature terms will certainly lead to incorrect de-

scriptions and eventually to wrong results. Thus, coupled with processes such as reaction, active transport,

association and dissociation, the new formalism allows a wide range of fascinating models to be treated in

detail and, most of all, correctly.
The remaining parts of this presentation focus on the general algorithm and its correctness, during which

some familiarity with differential geometry is assumed on part of the reader; see Appendix A or any

textbook on continuum mechanics/general relativity. Common traps and pitfalls as well as optimization

issues are also discussed, and finally the new territory, inhomogeneous and anisotropic diffusive processes

on curved surfaces, is explored in more detail in order to explain some of the elements needed for an actual

computation.
2. The numerical method

The starting point of the simulation problem is the diffusion equation, and because curvilinear coor-

dinates in n-dimensional space are to be allowed, a covariant version is needed. Without loss of generality,
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one such variant describing the temporal development of a particles probability distribution P is (see [9] for

derivation and explanation)

otP ¼ ri

�
� DijFjP þ rjDijP

�
; ð1Þ

where ri is the covariant derivative. Here, the summation rule of Einstein is adopted, meaning that an

index appearing both raised and lowered implies a summation over all coordinates. The equation above is

just the Fokker–Planck equation with the diffusion tensor Dij identified as half of the second jump mo-

ments, and with a response to eventual forces satisfying the Einstein relation. Since the diffusion tensor is

invertible (it is real, symmetric and has positive eigenvalues), any system for which the diffusion approx-

imation holds can be described by the above equation by suitable definition of the general force. Even in the

presence of internal drifts, currents due to the flow of the media, and drifts due to temperature variations,
the governing equation can always be cast into the above form. In the simplest setups, Fj is just a force

divided by the typical thermal energy, and if it represents a conservative force at constant temperature it can

be written as kBTFj ¼ �rjV , where V is the potential energy.

The first pitfall of Monte Carlo diffusion simulations consists of confusing the above equation with

the traditional diffusion equation. As the Fokker–Planck equation is just a truncation of the Master

equation after the second jump-moment, it is easily interpreted in terms of a Monte Carlo update

mechanism and vice versa. But Eq. (1) does not coincide with the traditional diffusion equation, which

has the diffusion tensor moved outside the innermost derivative. While the validity of the traditional
equation for dense and especially anisotropic media has been seriously questioned [9], the present topic

is not about microscopic details but merely on simulating such details once they have been decided

upon.

Whence, if the traditional diffusion equation is insisted upon then the so-called ‘‘spurious’’ term must be

re-introduced in order to transform the problem into the form of Eq. (1), allowing the first and second

moments to be read off. This means that the force must include an additional term equal to ðD�1ÞjkrlDlk in

order to obtain the traditional diffusion equation, just as it was done in [5]. Failure to do so will break the

correspondence between the simulation and the macroscopic dynamic equation. For a detailed discussion
of the various drift terms, particularly the spurious one, see [1,8,9].

Every Monte Carlo update scheme moving a particle from ~r0 to ~r in Dt inevitably dictates some

transition rate W ð~rj~r0Þ. The challenge of constructing a correct numerical method is to make the first

and second moments of this transition rate match the ones occurring in the desired diffusion equation.

Kikuchi et al. [5] provided such schemes in flat space using Cartesian coordinates. Here, an update

routine is constructed that can be applied using curvilinear coordinates in spaces of non-trivial geometry

as well. It introduces two spatial and two temporal components, in both cases a dimensionless distri-

bution and its related physical scale. Starting with the spatial ingredients, a dimensionless, radial dis-
tribution f ðnÞ in n dimensions and a typical jump length l > 0 must be specified. Together they

represent the radial jump distribution in physical space, and as such f ðnÞ must have well-defined first

and second moments

nm �
Z 1

0

f ðnÞnmþn�1 dn: ð2Þ

Similarly, a dimensionless distribution hðfÞ over positive values only and a time scale s > 0 are to be in-

terpreted collectively as the distribution of waiting times between two successive jumps. As a result, the

average f must exist. For notational convenience the dimensionless diffusion tensor b̂ � D̂fs=ðn2l2Þ is in-
troduced along with the special square root b̂1=2 that conserves the principal axes. That is to say, if Ŝ is a

non-singular transformation such that Ŝb̂Ŝ�1 ¼ diagðkiÞ then b̂1=2 ¼ Ŝ�1diagð
ffiffiffiffi
ki

p
ÞŜ. The existence of such

an Ŝ is guaranteed by the properties of the diffusion tensor. In the following the symbol
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An �
dVn

dr

����
r¼1

¼ npn=2

C 1þ n=2ð Þ ð3Þ

denotes the surface area of a unit sphere in n-dimensional space [10]. Similarly Vn denotes the vol-

ume within the same sphere, whereas V~z denotes the volume parametrized by some particular coordinate

system~z.
Before the update mechanism itself is presented, consider first a specific transition rate for a single

particle, which will map the first two moments onto those of Eq. (1) during the transition from the Master
to the Fokker–Planck equation.

Proposition 1. The microscopic transition rate

W ð~rj~r0Þ ¼
k

An

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðb̂Þ

q f b̂�1=2 � ð~r
���� �~r0Þ=l

����min 1; expð~F � ð~r
�

�~r0ÞÞ
�

ð4Þ

corresponds (to the second order in l) to the macroscopic equation (1) when the rate constant k ¼ 2n=ðfsÞ is
used.

Proof. Let ĉ � b̂1=2 and assume n > 1 (the simple special case n ¼ 1 yields the same result). The first and

second jump moments will now be calculated in order to show that they coincide with the ones appearing in
Eq. (1).

According to the local flatness theorem [11], it is possible to pick a locally flat coordinate system around

the point~r0. Without loss of generality this coordinate system can be chosen so that the forces at~r0 point
along the last coordinate only, or such that the coordinate axes coincide with the principal axes of the

diffusion tensor, depending on what is more suitable. A further linear coordinate transformation

~y ¼ b̂�1=2ð~r �~r0Þ=l ð5Þ

is applied to the definition of the moments, yielding the following intermediate results:

Dxi

Dt
ð~r0Þ �

Z
V~r

W ð~rj~r0Þðxi � xi0ÞdV~r ð6Þ

¼ kl2

An

Z
V0

~y

f ðj~yjÞðĉ~yÞið~F ĉ~yÞdV~y þ Oðl3Þ ð7Þ

and

DxiDxj

2Dt
ð~r0Þ �

1

2

Z
V~r

W ð~rj~r0Þðxi � xi0Þðxj � xj0ÞdV~r ð8Þ

¼ kl2

2An

Z
V~y

f ðj~yjÞ ĉ~y
� �i

ĉ~y
� �j

dV~y þ Oðl3Þ; ð9Þ

where the prime on the volume in Eq. (7) denotes integration over the parts of the volume where the jump is

directed against the direction of the force.

In the chosen coordinates the distribution is, by construction, uniform over all angles whence fa-

cilitating an integration in hyper-spherical coordinates. The transformation to hyper-spherical coordi-

nates is
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yð1Þ ¼ r sinðhn�2Þ sinðhn�3Þ sinðhn�4Þ � � � sinðh2Þ sinðh1Þ sinð/Þ;
yð2Þ ¼ r sinðhn�2Þ sinðhn�3Þ sinðhn�4Þ � � � sinðh2Þ sinðh1Þ cosð/Þ;
yð3Þ ¼ r sinðhn�2Þ sinðhn�3Þ sinðhn�4Þ � � � sinðh2Þ cosðh1Þ;
� � �
yðn�2Þ ¼ r sinðhn�2Þ sinðhn�3Þ cosðhn�4Þ;
yðn�1Þ ¼ r sinðhn�2Þ cosðhn�3Þ
yðnÞ ¼ r cosðhn�2Þ;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

with Jacobian [10]

Yn
m¼1

dym ¼ rn�1drd/
Yn�2

m¼1

sinmðhmÞdhm ð11Þ

+

An ¼ 2p
Yn�2

m¼1

Z p

0

sinmðhÞdh ð12Þ

Consider the first moments in a locally flat Cartesian coordinate system aligned such that the last co-

ordinate yðnÞ points in the opposite direction of the force, implying that hn�2 should only be integrated over

½0; p=2�. The radial part is easily integrated to yield the second moment of the distribution f , and using
recursive relations like

Z
sinnðaxÞdx ¼ � sinn�1ðaxÞ cosðaxÞ

an
þ n� 1

n

Z
sinn�2ðaxÞdx ð13Þ

(obtained through integration by parts) the angular part can be calculated with help from Eq. (12). The

drift in the first coordinate then becomes

Dxð1Þ

Dt
ð~r0Þ �

kl2

An
n2ðĉÞð1Þi ðĉÞiðnÞð~F Þ

ðnÞ An

2n
¼ kfs

2n
ðD̂~F Þð1Þ ð14Þ

and by symmetry the general relation is

Dxi

Dt
ð~r0Þ ¼

kfs
2n

ðD̂~F Þi þ Oðl3Þ; ð15Þ

where all physical quantities on the right-hand-side must be evaluated at~r0. These first moments match the

first jump moments in Eq. (1) if kfs ¼ 2n.
A coordinate system in which the tensor b̂ is diagonal is most suitable when considering the second

moment. Transformations and tricks similar to the above eventually lead to

Dxð1ÞDxð1Þ

2Dt
ð~r0Þ �

kl2

2An
n2ðb̂Þð1Þð1Þ An

n
¼ kfs

2n
ðD̂Þð1Þð1Þ ð16Þ

and

Dx1Dxð2Þ

2Dt
ð~r0Þ � 0 ð17Þ
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and once again the general relation

DxiDxj

2Dt
ð~r0Þ ¼

kfs
2n

ðD̂Þij þ Oðl3Þ ð18Þ

matches the second jump moments in Eq. (1) if kfs ¼ 2n. h

Having established the correctness of the transition rate of Proposition 1, the actual routine is just an

implementation of Eq. (4) with a suitable scaling of simulation time, Dt � 1=k. According to Kikuchi

et al. [4,5] one key difficulty in Monte Carlo approaches is the mapping of the artificial simulation time

onto the proper physical time. Superfluous it may seem to incorporate two separate physical scales l and
s, but they actually help to resolve this temporal interpretation issue, and they come in handy during
optimizations of the method. In order to make the artificial and physical time equivalent, clearly the four

introduced components must be dependent quantities. Since the length scale l is to be used as an ex-

pansion parameter, it must be small compared to all relevant length scales of the system. Whence, fixing

of the simulation time to reflect the physical time is most easily achieved by tuning s according to the

relation

n2l2 / 2TrðD̂Þfs; ð19Þ

which emerges from Eq. (18) of the proof.

Drawing on all these results, a valid update mechanism that will move a single particle from an initial

position ð~r; tÞ to ð~r þ D~r; t þ DtÞ in any n-dimensional media can be implemented as follows:

1. At ð~r; tÞ, calculate b̂1=2 and ~F .
2. Choose a dimensionless waiting time f from the distribution h, and set Dt ¼ fs=ð2nÞ.
3. Choose a test step D~r:

3.1. Choose a unit vector ~w from a uniform distribution over all directions.

3.2. Choose a dimensionless, radial jump length n from the distribution f .
3.3. Calculate D~r by moving an arch length jb̂1=2~wjnl in direction b̂1=2~w along a geodesic.

3.4. Draw a number q from the uniform distribution over the unit interval, Uð0; 1Þ.
3.5. If q > expð~F � ðD~rÞÞ then set D~r ¼~0.

4. Update ð~r; tÞ ! ð~r þ D~r; t þ DtÞ.
Applying this scheme repeatedly, the full time development of a single trajectory can be found. By

keeping track of an ensemble of N trajectories, any quantity of interest can be extracted as an average over

all the calculated realizations, and the noise should die out as 1=
ffiffiffiffi
N

p
as in any basic Monte Carlo sampling.

The steps 3.1–3.3 ensure correct second moments, and the steps 3.4–3.5 constitute a Metropolis vali-

dation of the test step ensuring the appropriate equilibration between the origin and the destination [2–4]. It

is important to use the square root of the diffusion tensor that conserves the principal axes. Another square

root in the form of Ôb̂1=2, where Ô is orthogonal, will result in transformed moments Ôb̂ÔT due to the

expansion.

Being an expansion parameter, l must be smaller than any other physical length scale involved in the
above calculations, 1 including the ones dictated by the presence of physical time scales in combination with

the diffusion tensor. On curved surfaces the radius of curvature is another length scale to remember when

deciding on a suitable jump length.

By far the hardest part of the above numerical method is step 3.3. The displacement must always follow

a geodesic curve through~r as these represent the locally straight lines. The main reason for doing so is to
1 Actually, it is the largest eigenvalue of b̂1=2 times l that must be small, but picking the right units for the length and time scale

usually implies that the components of the diffusion tensor are of order unity.
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ensure uniform sampling over all directions in the tangent space to the point~r. Any deviations from these

straight lines represent fictitious forces introduced due to theoretical/computational carelessness, see the

example of Section 3. By moving along geodesics, the artificial curvature of the coordinate system is neatly
extracted from the particle motion. In flat space the displacement is along a simple line D~r ¼ b̂1=2~wnl even
though care must be taken to ensure this (and the randomness of directions) when working in non-

Cartesian coordinates.

Analytic solutions of the geodesic equation are next to impossible to find for any point and any direction

on a general manifold. Fortunately, as the jump length is quite small, good approximations are easily

obtainable. The behavior of the coordinates on a geodesic curve parametrized by arch length k can be

approximated by a Taylor expansion

xiðkÞ ¼ xij~r þ
dxi

dk

����
~r

kþ 1

2

d2xi

dk2

����
~r

k2 þ Oðk3Þ: ð20Þ

The original coordinate value xij~r is just coordinate i of the starting point~r of the jump, and the first de-

rivative is simply the unit tangent vector ~w. The second-order term is the important curvature term and it is

found from the geodesic equation

d2xi

dk2
¼ �Ci

kl

dxk

dk
dxl

dk
; ð21Þ

where Ci
kl is the Christoffel symbol describing the curvature of the coordinate system; see Appendix A.

Higher order terms to the expansion (20) are obtained by differentiation of the geodesic equation

(21).

The curvature term is, as will be illustrated in the upcoming section, necessary for the correctness of the

method. Unfortunately, it conjures some computational complications in case the coordinate system has a

singularity. Such singularities, in contrast to physical singularities of the space itself, always has a sound

physical interpretation and with a little care they pose no real threat.
Optimizations are possible. Since any couple of distributions f and h will do under the requirement that

the length scale l is suitably small, the simplest and fastest choice is to use fixed steps (delta-functions).

Moreover, as the method relies only on the local jump length being much shorter than the smallest local

length scale, the jump scale l can be allowed to vary from point to point implying similar variations in s
according to Eq. (19). In other words, as long as the simulation performs many jumps within a region of

approximately constant physical characteristics, the central-limit theorem guarantees diffusive behavior.

Thus the simulation can be speeded up considerably in inert regions of configuration space (typically far

from boundaries and reaction surfaces).
Boundary conditions (reflecting, absorbing or mixed) are trivially implemented for the single particle

method above. Internal dynamics can also be introduced, as long as the development of the internal state

can be calculated analytically/numerically during the time Dt the particle stays at~r; see [12] for a radical pair
example with magnetic polarization. Multi-particle simulations become available too by applying the single

particle update scheme to each individual particle using the smallest (local) jump length available in order

to fix the synchronization problem. Complications from localization of the inter-particle boundary is

discussed in reference [13]. Reaction between particles or at the boundaries can be achieved by introduction

of an integral first-order reaction strength j to be applied at the contact surfaces. The particles may react
with probability 1� expð�jDtÞ or an internal survival variable might be decreased a factor expð�jDtÞ in
order to achieve better statistics on long time trajectories. In the diffusion controlled extreme the particles

always react, and in the opposite situation of no reactivity reflecting boundary conditions are arrived at

after geometric considerations.
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3. An example: simulation in spherical coordinates

Consider the simple problem of a single particle diffusing in a homogeneous and isotropic 3-dimensional
media (n ¼ 3). Scaling the time or space suitably, Di

j ¼ dij can be assumed, where d is the Kronecker delta.

The radial distribution is well-known as a function of time

P ðrÞrn�1 ¼ 4prn�1ffiffiffiffiffiffiffiffiffiffi
4pDt

p n exp

�
� r2

4Dt

�
ð22Þ

and it is straight-forward to obtain it using a random walk simulation in Cartesian coordinates ðx; y; zÞ.
The same simulation in spherical coordinates ðr; h;/Þ is not as obvious as it might seem at first sight.

While the spherical basis vectors at any point can be normalized to form an orthonormal basis
f~er;~eh=r;~e/=ðr sin hÞg, care must still be taken to ensure that the direction is drawn from a uniform dis-

tribution. A common misconception is to believe that a spherical transformation of two uniformly picked

angles, ða; bÞ ! ðsin a cos b; sin a sin b; cos aÞ, results in a uniform distribution over all directions. Isotropic

unit vectors can be generated by drawing the coordinates from the univariate, zero-mean normal distri-

bution Nð0; 1Þ followed by normalization [14]. They can also be generated according to the area element

Eq. (11), which in 3 dimensions reduce to ðh;/Þ ¼ ðarccosðX Þ; pY Þ where X ; Y 2 Uð�1; 1Þ. Alternatively, a

Monte Carlo hit‘n’miss method can be applied by assigning coordinates from Uð�1; 1Þ and accepting the

vector only if the length is less than one before normalization.
The necessity of the curvature term now becomes apparent. If the expansion (20) is truncated after the

first order then the method consists simply of perturbing the coordinate set. Consider a jump along the h
coordinate alone. Without the curvature term, the particle will jump from ðr; h;/Þ to ðr; hþ Dh;/Þ when
trying to move in the direction of~eh. But this means that the particle has moved along a surface of constant

radius and not along a straight line in space. A fictitious force directed towards the origin has been in-

troduced. Likewise, a jump along the / coordinate will seem to be influenced by a force that attracts the

particle to the z-axis. The possible destination points have not been sampled uniformly. Effectively, the

angular and radial motion is decoupled and the angles can therefore be integrated leaving a simple random
walk along the radial coordinate with mobility only a third of the mobility of the original problem. Fig. 1

illustrates how well such a first-order simulation compares to the 1-dimensional solution (22).

For exactly the same reasons as emphasized above, simulating diffusion on a sphere by perturbing one of

the spherical angles ðh;/Þ by a small amount repeatedly will not be correct, since displacements in the latter

coordinate will follow circles of constant h instead of great circles (the geodesics of the sphere). Whence an

odd force drawing the particle towards the closest pole has erroneously been introduced. Again, the cur-

vature term must be included.

Alternative tricks, such as applying spherical geometry in order to follow great circles [15], or following
the tangent plane itself [12] (thereby leaving the sphere) in combination with projection will both, if done

carefully, correctly implement the curvature term. Unfortunately, it is not possible to extend these pro-

cedures to any surface of less symmetry than the sphere. The new algorithm, however, can be applied for

any surface, and it operates with the two coordinates of the sub-manifold only thereby eliminating the need

for projections.

Returning to the 3-dimensional random walk, inclusion of the curvature term in Eq. (20) will lead to the

following approximate update when using jump length k ¼ nl:

Dr
Dh
D/

0
@

1
A ¼

wr

wh

w/

0
@

1
Akþ 1

2

rðwhÞ2 þ r sin2 hðw/Þ2

�2wrwh=r þ sin h cos hðw/Þ2
�2wrw/=r � 2whw/= tan h

0
@

1
Ak2; ð23Þ

where the random directional vector ~w is normalized in the sense
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Fig. 1. Radial distribution from a simulation of the 3-dimensional random walk by perturbing random coordinates by a small amount

in spherical coordinates while keeping the jump length fixed. Erroneously, it matches the theoretical 1-dimensional distribution instead

of the correct 3-dimensional one which can be seen in Fig. 2. The brighter error bars capping the simulation results have a height of 5

standard deviations.
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j~wj2 ¼ ðwrÞ2 þ r2ðwhÞ2 þ r2 sin2 hðw/Þ2 ¼ 1: ð24Þ

Computationally speaking, the addition of the curvature term is not a lot of extra work but the effect is

remarkable as illustrated by Fig. 2. The accuracy, as indicated by the error bars, should be good enough for

most calculations, but for consistency the small deviation from the analytical result will now be discussed

along with possible fixes.

First of all, the update (23) is only an approximation. Third and higher order terms could be added as

described in Section 2 at extra computational expense.

Worse, there is a singularity at all points where r2 sin h ¼ 0, where the update fails as the second-order
term diverges. 2 This singularity is, of course, a singularity of the coordinate system and not a physical

singularity; the origin, for example, is just as ordinary as any other point in the flat space. The interpre-

tation is that near r2 sin h ¼ 0 it does not make sense to move in all coordinate directions. Close to the

origin (small r) any finite jump along an angular basis vector will end up being mainly a radial jump. And

near the z-axis (small r sin h with intermediate or large r), any jump along~e/ will mainly be a radial jump or

a jump along ~eh. In conclusion, near the singularities some coordinates may be ignored (or picked at

random) while the others follow the usual update. In terms of Eq. (23), near r sin h ¼ 0 a uniform jump

subjected to w/ ¼ 0 is used, and near the origin wh ¼ 0 too. Such forceful modifications can be postponed
by using smaller and smaller jump lengths when approaching the singularities, thereby increasing the ac-

curacy of the calculation. However, this approach will drastically slow down the computation, and the

truncation will eventually have to be applied anyway as the singularity persists.
2 So does the first-order term due to the factors r and r sin h needed to normalize the angular basis vectors.
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Fig. 2. Radial distribution from a simulation of the 3-dimensional random walk in spherical coordinates by the proposed algorithm

including curvature terms. The theoretical 3-dimensional distribution is shown for comparison.
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Finally, the actual arch length of the jump given by the update (23) is not exactly k, though a very good

approximation provided l is small. This shifts the time scale slightly during some of the updates according

to the relation (19). By requiring the actual displacement to have the desired jump length

jD~rj2 ¼ n2l2 ¼ k2 1

0
@ þ~w � d

2~x

dk2

�����
~r

kþ 1

4

d2~x

dk2

�����
~r

 !2

k2

1
A ð25Þ

the correct parameter k can be found which fixes this problem. A contraction, which leads to acceptable

results after only 1–3 iterations, can be crafted from this relation.

Typically, the fixes described here increases the computational time by less than a factor 2 when starting

from the simplest (and incorrect) first-order update, thus the present algorithm is feasible compared to

simpler and more error-prone methods.

The Metropolis part of the method is absent in this simple example because the potential is constant, but

since the present implementation is similar to existing methods, its validity is confirmed in the literature [4].

Application to anisotropic systems can be found in reference [9].
4. An application: diffusion on a curved surface

Until now, the background of the diffusion process has been flat despite the use of various coordinate

systems. In order to illustrate how the new-found method works on spaces of non-trivial geometry, a wide

family of 2-dimensional surfaces embedded in ordinary 3-dimensional space will now be considered.

Generally, two coordinates ðu; vÞ are needed to parametrize the surface. Here, the simplifying assumption is
adopted that any radial line (from the origin outward in one direction only) intersects the surface of interest

only once. In this way, the spherical angles of the intersection point can be read off, and thus ðu ¼ h; v ¼ /Þ
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can be reused as coordinates on the surface. A more direct advantage is that only one map is needed

(ignoring minor mathematical technicalities) to get from ðu; vÞ-parameter space to the surface. A surface

with only one radial intersection can be parameterized in spherical coordinates as

~r : ðh;/Þ ! ðcðh;/Þ; h;/Þ ð26Þ

meaning that the radial coordinate is determined by the two angular ones, r ¼ cðh;/Þ, where c is a dif-

ferentiable function. The two tangents of the surface are orthogonal, and the induced metric tensor, de-

scribing the intrinsic geometric properties of the surface (such as defining length and inner product),

becomes

gij ¼ c0
2 þ c2 c0 _c
c0 _c _c2 þ c2 sin2 h

 !
() gij ¼ 1

g
_c2 þ c2 sin2 h �c0 _c

�c0 _c c0
2 þ c2

 !
ð27Þ

with the determinant (square of the volume element)

g � detðgijÞ ¼ c2 _c2
�

þ ðc02 þ c2Þ sin2 h
�
: ð28Þ

Here the prime and dot denotes differentiation with respect to h and /, respectively. The resulting Chris-

toffel symbols are

Ch
hh ¼

cc0

g
ðc00
�

þ cÞc sin2 hþ 2 _c2
�
; ð29Þ
Ch
h/ ¼ c

g
ðcc0 _c0
�

þ c2 _c� c0
2

_cÞ sin2 hþ _c3 � cc0 _c cos h sin h
�
¼ Ch

/h; ð30Þ
Ch
// ¼ c sin2 h

g
cc0€c
�

� c2c0 sin2 h� c3 sin h cos h� 2c0 _c2 � c _c2= tan h
�
; ð31Þ
C/
hh ¼

c_c
g

cc00
�

� c2 � 2c0
2
�
; ð32Þ
C/
h/ ¼ c

g
ðc02
�

þ c2Þ sin hðc0 sin hþ c cos hÞ þ _cðc_c0 � c0 _cÞ
�
¼ C/

/h; ð33Þ
C/
// ¼ c _c

g
c€c
�

þ 2c0
2

sin2 hþ c2 sin2 hþ cc0 sin h cos h
�
: ð34Þ

While these symbols might seem cumbersome, bear in mind that the full diffusion operator for such a

system is magnitudes more involved. Expanding the covariant derivatives in the diffusion equation (1)

will result in an operator containing sums of Christoffel symbols with themselves as well as derivatives

of Christoffel symbols. Analytically, it is a nightmare, and computationally, it is a heavy-weight. Direct

discretizations will be quite inaccurate, and little hope is left that a transformation into a more decent

operator can be found. In that light, the general Monte Carlo diffusion algorithm appears far more
straightforward as it applies only the symbols (29)–(34) in linear combinations when constructing the

curvature term
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Dh
D/

� �
ðkÞ ¼ wh

w/

� �
kþ 1

2

Ch
hhðwhÞ2 þ 2Ch

h/w
hw/ þ Ch

//ðw/Þ2

C/
hhðwhÞ2 þ 2C/

h/w
hw/ þ C/

//ðw/Þ2

 !
k2; ð35Þ

whereby it achieves the desired jump moments. 3 The special square root of the diffusion tensor should pose

no problem either as it can always be calculated analytically:

D̂ ¼ a b
b c

� �
() D̂1=2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ cþ 2
ffiffiffi
d

pp aþ
ffiffiffi
d

p
b

b cþ
ffiffiffi
d

p
� �

: ð36Þ

The properties of the diffusion tensor guarantees that the determinant, d � ac� b2, is non-negative.
It is worth considering simplifications of the above results. If the surface has an additional axial sym-

metry, meaning c ¼ cðhÞ, the expressions becomes much simpler. In this case, the metric tensor becomes

gij ¼ diag c0
2

�
þ c2; c2 sin2 h

�
() gij ¼ diag

1

c02 þ c2
;

1

c2 sin2 h

� �
ð37Þ

leading to the Christoffel symbols

Ch
ij ¼

c00þc

c02þc2
c0 0

0 � c0 sin hþc cos h

c02þc2
c sin h

0
@

1
A; ð38Þ
C/
ij ¼

0 c0

c þ 1
tan h

c0

c þ 1
tan h 0

0
@

1
A: ð39Þ

As a specific example, consider now the axially symmetric surface

cðhÞ ¼ 1þ 2ðp� hÞ2 sin2 h ð40Þ

(using some suitable length unit) illustrated in Fig. 3. This surface has a dangerous physical singularity at

h ¼ 0 and a more harmless coordinate singularity near h ¼ p. The physical one poses no real problem for

the diffusion of any particle of finite size, as there will be a natural limit to how far down the hole at the
‘‘north pole’’ the particle can go due to steric strain. Here, a minimal value of h ¼ p=12 is chosen where an

absorbing boundary condition is applied. In this fashion, the valley could be interpreted as an active or

catalytic site on a cell or a protein.

Imagine a particle of some type A having a high affinity for the surface and therefore diffusing on it. Such

a particle could be created anywhere on the surface. It could be created at the active site itself from sub-

strates B and C diffusing around in 3-dimensional space, Bþ C ! A. It will then leave the site while dif-

fusing on the surface until eventually it returns to the active site and the original process is inverted,

A ! Bþ C. This is an example of a recombination process. Another possibility is to have another site, for
example at h ¼ p, where particles are created, again by association of substrates from the surrounding

space, perhaps by a simple modification, A0 ! A. The particles may be allowed to escape the surface again

at this site, and reaction yields of such a process (A0 ! A, diffusion to the other reactive site, A ! Bþ C)

could be studied. If the surface is sufficiently good at capturing substrates from the surrounding space, such

a trick should speed up site-particle and particle–particle reactions considerably, since it is easier to find the

hot spot or another particle in 2 dimensions than it is in 3. Yet again, particles could be allowed to associate
3 Note how the curvature term for coordinate i can be expressed as an ordinary product of vectors onto a symmetric matrix, ~wĈi~w.



Fig. 3. Example defined by Eq. (40) of a curved surface on which a diffusion process could occur. Valid angles are h 2 ½p=12;p� and
/ 2 ½0; 2p�, although a quarter of the surface is not shown in order to allow a peek inside. The point near h ¼ 0 has been cut out to

avoid the physical singularity (the surface is not differentiable), whereas the point h ¼ p poses no problem despite the coordinate

singularity (the volume element vanishes).
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anywhere on the surface according to some distribution or some rate, and likewise allowed to dissociate

again continuously, or inter-particle reactions could be allowed.
Evidently, lots of models can be build from this setup, and the Monte Carlo method of Section 2

guarantees correspondence with the governing physical equation of motion, no matter what forces are
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applied and regardless of inhomogeneity or anisotropy of the diffusion tensor. The simplest choice is of

course to use a potential V ðh;/Þ implying a conservative force, and an isotropic diffusion tensor

Dj
i ¼ Dðh;/Þdji , where Dðh;/Þ is constant if the media is homogeneous as well.
The diffusion-controlled process of a single particle starting at h ¼ p and reacting at the h ¼ p=12

boundary on the curved but isotropic and homogeneous surface (V ¼ 0) is illustrated in Fig. 4. Relative

accuracy of 1% can be achieved within minutes on a personal computer. Similar calculations with non-

trivial (and non-axial) potential plus inhomogeneity (all without reaction) show relaxation to the expected

equilibrium distribution on the correct timescale.

For the sake of completeness, it should be noted that in simulations with less extreme reactions the

analytical contact strength k0, representing a delta functionality, should be translated into an integral

strength j

k0 ¼
Z

k0
dðr � r0Þ

rn�1
rn�1 dr ’ jDrcontact ð41Þ

as the numerical routine expands the reaction surface into a thin reaction volume with a width equal to the

average (perpendicular) jump length of the updates leading to collision. For a particle reaching a fixed

surface Drcontact ’ l=
ffiffiffiffiffi
4n

p
, and for particle-particle collisions Drcontact ’ l=

ffiffiffi
n

p
, both with alterations from f

and D̂.
5. Conclusion

A basic Monte Carlo update mechanism has been presented, which can be used to numerically simulate

any single-particle diffusion process in any coordinate system of any space. It is easily extended to cover

multi-particle simulations with various types of boundary conditions and even internal dynamics. Tricks,
traps and optimization issues of actual simulations have been discussed, and the formulas needed for the

treatment of diffusive processes on a large family of surfaces have been provided.

In the literature, a multitude of tailor-made numerical routines has been applied to diffusive systems with

high degrees of symmetry. Typically, only Cartesian coordinates, or a single radial coordinate in the case of

spherical symmetry, are used. Numerical studies of diffusion on surfaces have mainly been restricted to the

plane and the sphere. While such specialized methods may be a little faster (by a constant factor) than the

mechanism presented here, they cannot be extended to more general coordinates or to systems of less or no

symmetry. Although the principles of diffusion on manifolds has been treated analytically in the literature,
almost no guidelines on how to handle inhomogeneity and anisotropy in such cases has been put forth

[9].

Compared to the existing algorithms in the literature, the new algorithm has two obvious strengths.

First, it allows the simulation to be performed in any coordinate system regardless of the properties of the

media, and secondly, this coordinate invariance also allows simulations in non-Euclidean spaces. Even the

combination of inhomogeneity and anisotropy of the diffusion tensor on such interfaces is implemented

correctly. Whence it opens a huge class of interesting models, especially the study of diffusion processes on

curved surfaces in general. For reactions on micellar surfaces, it could be interesting to observe changes in
recombination yield induced by squeezing the micelle into an oblong shape. Random walks and reactions

on nano-structures can be studied as well.

The proof of the algorithm rests on the transition from the Master equation to the Fokker–Planck

equation. It therefore assumes the diffusion approximation to hold [1,16]. This means that the validity of

the basic update mechanism cannot be challenged on physical grounds. It is a statistical method like those

in references [4,5], and not a molecular dynamics simulation [17]. The method does not pass judgement on
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the underlying microscopic details or appearance of the diffusion equation. All it relies on is that the first

and second jump moments can be calculated and fed to the update routine. Only if the diffusion ap-

proximation itself does not hold is the present description insufficient. In that unfortunate case, a unique
expansion scheme exists [1,18] from which higher order corrections to the diffusion Eq. (1) can be obtained.

Whether an extension to the basic update mechanism exits, which incorporates such higher orders, is a

subject for future work.
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Appendix A. A differential geometry tutorial

The notation and formalism of differential geometry is not as well known as its simpler cousin, linear

algebra. As a consequence, a short introduction displaying the most basic concepts, relations and tech-
niques is included. The following presentation barely scratches the surface of the extensive mathematics and

physics sub-fields, and the reader is advised to explore the literature [6,11,20–22].
A.1. The metric tensor

Imagine an n-dimensional space onto which some spanning coordinate system has been placed. The

coordinates are called xi, where i is an index that runs over the n available coordinate names/numbers. They

are just n functions, xiðPÞ, of the geometrical points, P, in the space [21,22].

Core to the description of any metric space is the concept of the metric tensor, also known as the first

fundamental form. It is the symmetric rank ð0; 2Þ tensor, denoted ĝ, which measures distances in the space.

The components of ĝ in the chosen coordinate system are called gij and they do, like every other quantity,

depend on the point in which they are measured. The metric defines an operation called contraction which is

just a generalized inner product. Especially, the product of two vectors – contravariant tensors of rank
ð1; 0Þ – ui and vi is defined as

ð~u;~vÞ � gijuivj; ðA:1Þ

which in turn defines the notion of length through j~vj2 ¼ ð~v;~vÞ. Here the Einstein notation (from his

geometro-dynamic theory) has been used, meaning that every time the same index appears both as a super-

and a sub-index, a summation over all coordinates is implied [11,20]. The transformation from vectors to

oneforms – covariant tensors of rank ð0; 1Þ – is achieved by contraction with the metric tensor, vi ¼ gijvj.
The reverse transformation, from oneform to vector, requires a similar contraction with the inverse metric

tensor of rank ð2; 0Þ, ĝ�1, with components gij, satisfying gijgjk ¼ gki ¼ dki , where d is the Kronecker delta.

The above transformations can of course be applied to any tensor of arbitrary covariant/contravariant rank

as indices are simply raised and lowered by contraction with the (inverse) metric. Whence only the total

rank of a tensor (number of free indices) is usually referred to.

Finally, this special tensor carries all details about the intrinsic geometry of the space, whether it is flat or

curved, and if so, exactly how much. The volume element, for example, is just the square root of the de-

terminant of the metric tensor.
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A.2. The covariant derivative

Relations between physical quantities must be covariant, meaning that they must involve only tensors of

similar transformation properties, in order to be valid in any curvilinear coordinate system. The major

problem with physical equations when it comes to achieving covariance is that they often contain deriv-

atives, and partial derivatives are not covariant. 4 This is why a covariant derivative is introduced, which

derives any quantity needed while at the same time keeping track of how much of the change was caused by

the weirdness of the coordinate system and how much was an actual change in the quantity of interest. The

definition [11] is

rmT
pq���
ij��� � omT

pq���
ij... þ Cp

mrT
rq���
ij��� þ Cq

mrT
pr���
ij��� þ � � � � Ck

miT
pq���
kj��� � Ck

mjT
pq���
ik��� � � � � ; ðA:2Þ

where the Christoffel symbols

Ck
ij � 1

2
gkl oiglj
�

þ ojgil � olgij
�

ðA:3Þ

are derivable from the metric tensor. By definition, the Christoffel symbols are symmetric in the two

lowered indices but they are not themselves tensors. Furthermore, the covariant derivative on the metric

tensor itself is zero.

The most obvious use of the covariant derivative is for defining what is understood by straight lines in

curved space. Any curve with tangent ui is said to be a geodesic curve if is satisfies the set of geodesic

equations:

8i : ujrjui ¼ 0: ðA:4Þ

It is derived by requiring that the tangent of the curve parallel-transports into itself. Geodesics have ex-

tremal arch length and zero extrinsic curvature. They are the locally straight lines of the space.
A.2.1. Spherical coordinates

In 3-dimensional flat Euclidean space the use of Cartesian coordinates ðx; y; zÞ reduces the metric to the

identity matrix. Whence the distinction between oneforms and vectors (or any co- or contravariant rank) is

minimal — a vector and its corresponding oneform have the same components though one is a column and

the other a row vector. The Christoffel symbols are all zero and partial derivatives are the same as covariant

derivatives.

Changing coordinates to spherical coordinates ðr; h;/Þ through the transformation

xð ¼ r sin h cos/; y ¼ r sin h sin/; z ¼ r cos hÞ ðA:5Þ

the metric and the inverse become

gij ¼ diag 1; r2; r2 sin2 h
� �

() gij ¼ 1; 1=r2; 1=ðr2 sin2 hÞ
� �

ðA:6Þ

with volume element
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðĝÞ

p
¼ r2 sin h. The only non-zero Christoffel-symbols are:
4 Example: In Euclidean space the differential equation for a straight line looks very different in Cartesian coordinates and (hyper)-

spherical coordinates when expressed as the constantness of the directional vector.
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Cr
hh ¼ �r;

Cr
// ¼ �r sin2 h;

Ch
rh ¼ 1=r ¼ Ch

hr;

Ch
// ¼ � sin h cos h;

C/
r/ ¼ 1=r ¼ C/

/r;

C/
h/ ¼ 1= tan h ¼ C/

/h;

ðA:7Þ

which are used in the example of Section 3.

A.3. Sub-manifolds

Curved manifolds can be pictured as curved hyper-surfaces embedded in higher dimensional spaces. The
embedding of an m-dimensional sub-manifold in an n-dimensional space (obviously with 0 < m < n < 1)

with metric gðnÞij can be achieved in two ways. Either a set of n� m scalar functions fUAgn�m
A¼1 can be specified,

such that the hyper-surface is the set of all solutions to the system of equations UAðxiÞ ¼ 0, or alternatively

the coordinates can be parametrized by the coordinates fl on the hyper-surface, xi ¼ xiðflÞ. Here Latin

indices are used for the larger space and Greek indices for the embedded space.

A useful basis consists of the m tangents vectors (labeled by l) of the sub-manifold, olxi, and the n� m
normal oneforms (labeled by A), oiUA. From the first fundamental form of the sub-manifold, called the

induced metric,

gðmÞlm ¼ gðnÞij ðolxiÞðomxjÞ ðA:8Þ

every intrinsic property of the hyper-surface can be calculated. For an example, see Section 4.
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